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Abstract—Surrogate modeling is gaining more and more coil
ground in various engineering domains. The use of computa- | I | crack
tionally cheap surrogate models in electromagnetic nondestruc- X
tive evaluation —where usually heavy numerical simulators are % L %
o

involved— has already shown and still promises considerable im- d

provement over traditional approaches for specific applications.
The purpose of this paper is to propose an (limited) overview

of such an approach in the framework of electromagnetic Figyre 1: Cross-section of the studied ECT configuratiore Th

nondestructive evaluation. Adaptive sampling methods for the - . .
solution of inverse problems and for the generation of “opti- depthD is given in percentages of the plate thicknesss

mal”, interpolation-based surrogate models are presented and
illustrated by examples drawn from eddy-current nondestructive
testing. _ _ _ current scans above the plate (Fig. 1). The variation of the
Index Terms—Surrogate modeling; Nondestructive evaluation; o . ; . .

Eddy-current testing; Kriging coil impedanceAZ(t) is measurgdt(ls the coil pqsmor! over

a rectangular surface). The position and the orientatiothef
crack are known, only its length and depthD are enabled
to vary. For the numerical simulation, an integral formalis
'Ssed [6]. The varying crack properties, denotedxby [L, D],

. . . .are called thanput of the simulation and the corresponding
defects. The solution of the inverse problem (i.e., det‘”m'simulated impedance variation is denoted AR (t)
ing the properties of the defect based on the knowledge '

of some measured data) is of main interest, however, it is
still a challenging issue. Besides the theoretical pitfal
possibly being ill-posed, inverse problems raise comjurnat
difficulties as well, since inversion is often performed viei
solutions of direct problems. Even if sophisticated nuaari
simulators providing fine precision are available in ENDE ) IAZ(t) = AZ ()l

(e.g., finite element or integral equation schemes) théited x* = argminQ(x), whereQ(x) = Tazon 1)
computational burden is high.

In this paper, kriging-assisted surrogate modeling afince the objective functio®(x) is “expensive-to-evaluate”
proaches are presented. Kriging is a tool for function afreeding a numerical EM simulation) and might have many
proximation (see, e.g., the textbook [1]): based on sonecal minima, the so-called ‘fcient Global Optimization”
observations, an unknown function can be predicted at undfGO) algorithm [7] has been applied. Also the authors of
served locations within a stochastic framework (via a Ganss the present paper have dealt with the EGO algorithm in the
random process model). Besides the prediction, its estiinacontext of ECT inverse problems [8].
uncertainty is also provided. In electromagnetics, kigias The main idea of EGO is to construct the cheap surrogate
already shown good performance (e.g., [2], [3], [4] as exnodel of the objective function by kriging. Based on this
amples for single objective optimization or [5] as a recemirediction, along with its estimated uncertainty, a setjaén
approach for multiobjective optimization). sampling method is built upQ(x) is being evaluated step-by-
step always at the most “promising” poirtin an iterative
loop. The way to choose the next point is a compromise

The approaches are illustrated by a 2-parameter eddhetween a local and a global search over the input domain.
current testing (ECT) example. A homogeneous, non-magnetihe performance of EGO in our example is shown (Fig. 2).
conductive plate is féected by a thin, rectangular-shapedifter 10 initial observations (by a Latin Hypercube Samg)in
crack. An air-cored pancake type coil driven by time-harimonand 10 more iterations the global minimizer @x) is found.

|. INTRODUCTION

Electromagnetic nondestructive evaluation (ENDE)
widely used in industry to reveal and characterize in-nialter

I1l. OPTIMIZATION-BASED INVERSION BY THE EGQO ALGORITHM

We present a way for the solution of the inverse problem,
a the traditional optimization task:
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Figure 2: Performance of the EGO algorithm: samples are 00 T T
shown over the input domain. Triangles: initial samplegsdo a0 . . Is
adaptively added samples, number of iteration is in bracket 7 . 7
followed by the actual value of. (The “measured data” — 0 e
related to a = 8.5mm, D = 20 % crack— is computed by the =l P
numerical simulator). 3w e
30| ' 1
20| )
IV. ADAPTIVE DATABASES AS SURROGATE MODELS ” 1
Whereas the EGO concentrates the observations into certain 1 o 10

4Lengg',]th fmms
“promising” regions of the input domain (according to the. . .

specific inverse problem to be solved), one can perform a sanpidure 3: Interpolation erroi(x) normalized by the norm of
pling also to achieve a general surrogate model to intet@oléhe S'g'?al of al = _8~5.m”f" D = 20% crack (colormap).
the output signahZ,(t) based on samples stored in a databas-g?p: haive sample distribution. Bottom: result of our adapt

However, the precision of the yielded surrogate model dd@eﬁsampling (more samples are concentrated in the regionsewher

not only on the interpolator but also on the choice of thtl!,:Ie problem is more sensitive to the input parameters, s i

samples. Such adaptive sampling strategies, aiming tcneedMVhy the error is smaller in this case).

the interpolation errog(x) = HAZX(t) - AZx(t)H (whereAZ(t)

is given by the surrogate model) are then proposed. S&T Cooperation (FR/2008) and by DIGITEO clusters
When the nearest neighbor rule is used as an interpola@[roject_

the sampling must be uniform in the domain of impedance
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